TRACK21

VISIT BY PROFESSOR BUDDHIMA INDRARATNA, 28 May 2012

Points raised in discussion

WA1: Railway foundations. Presentation by Jeff Priest

WAT. Kanway foundations. Tresentation by Sen Triest	
Comment	Response
The pore pressures used in both the track	It was perhaps unclear from the slides that
sub-base and the embankment work seem	the cell pressure is also elevated, ie we are
quite high – higher than would occur in	testing at what we believe is the right
reality where there is nearly always a	effective stress assuming that translation of
suction.	axes applies.
When presenting the results of the HCA	OK. We will address these matters
tests, consider what exactly you mean by	
"mobilised strength" (does it accord with	
what is conventionally meant) and also	
look at the classical definition of Cyclic	
Stress Ratio (eg Ishihara), relating it to the	
tendency for dilation	
We are showing failures of the sub-base	We will check this out
after 1500 cycles whereas in practice	
failure would not occur until after more	
than a million cycles. Are our stresses	
realistic? The capping layer takes quite a	
bit of load, so that the stresses going into	
the sub-base are quire small.	

WA2: Ballast and sleepers. Presentation by Antonis Zervos

Comment	Response
The number of cycles you can reproduce in	We are not sure we will be able to do many
PFC2D or PFC3D is very small (500 is a	more cycles, but the potential particle
lot). This is a major limitation. If you can	method is ~3x more efficient
overcome this you will doing very well.	(computationally) than clumps of spheres.
What about the effects of particle	We had rather been looking at other
breakage? This starts very quickly in reality	aspects, and what might happen in addition
	to breakage of particles (take breakage out
	of the equation).
Refer to BI ASCE paper using CT scanning	
to characterise ballast particle shape (?)	
BI has not yet been able to match DEM and	
real data (over more than about 500	
cycles?)	
Effective confining stresses in lab tests are	200 kPa was to simulate tamping. We will
high – 45 to 200 kPa. Field measurements	try out the stress cells and see if we can get
by BI have shown vertical stresses up to	any sensible data from them.

about 300 kPa below the sleeper base and lateral stresses of 20 kPa. These were measured using proprietary stress cells.	
The problem with scaling the particles is that the amount of breakage is reduced.	Is this a problem for us? We could use a different mineral?

WA3: Noise and vibration. Presentation by Sam Rushworth

Comment	Response
Suggest look at publications by Richard	
White and Kieth Tieuw (mech Eng.,	
Wollongong Uni) and Paul Neehan,	
Queensland Uni, who have been	
developing tribology based noise models.	
Railcorp NSW has adopted the	
Wollongong noise model.	
BI has also done some work on ballast	
mats in reducing noise and ballast particle	
breakage – this has been accepted by	
Geotechnique. Ballast mats were used	
either between the sub-ballast and the	
underlying rock; or between the sleeper and	
the ballast where the underlying material	
was alluvial (soft).	

WA4/5: Critical zone improvements/system integration. Presentation by Jeff Priest

Comment	Response

WA6: Performance, environmental and economic modelling. Presentation by Simon Blainey

Comment	Response
Suggest cross-reference to other on-going	
work on whole life modelling.	

General comments

Comment	Response
Climate does not seem to be quite the same	
issue in Australia. The main climate related	
problem is rainfall-induced slides of	
severely desiccated clays. There does not	
seem to be the same problem as in the UK	
of seasonal shrinkage and swelling	
Chemical stabilisation of railway tracks is a	

big issue in Australia – lingo-sulphanates	
have superseded conventional lime or	
ballast owing to environmental concerns.	

Draft WP 28/5/12