

Ballast/sleeper fundamentals, Lab integration Industry Steering Group, July 2014

Academics: William Powrie, Antonis Zervos, Glenn McDowell

Researchers: Louis Le Pen, John Harkness, Jean-Francois Ferellec, Th. Makrodimopoulos

Students: Taufan Abadi, Femi Ajayi, Sydney Laryea, Mohammad Safari, Edgar Ferro, Matt

Potticary, Sanduni Gunaratne

Fundamentals: Ballast and sleepers

Objectives

- 1. To develop a complete understanding of the role and requirements of **ballast grading** in terms of internal stability, strength, resilient modulus, drainage and fines capacity in the context of a modern railway
- 2. To investigate "soft" techniques such as fabric wrapping of the ballast (ballast bags), gluing, resin injection, geogrids and **random fibre** reinforcement
- To investigate different sleeper types and sleeper/ballast interface modifications such as undersleeper pads

Fundamentals: Ballast and sleepers

Methods

- "Full scale" rig tests: reproduce track geometry and loads as realistically as possible in lab conditions.
- •Triaxial tests on model ballast: investigate the possible benefits of fibre reinforcement.
- •DEM modelling: insights on micro-mechanics of ballast.

Objective 1: Role and requirements of ballast grading

Conclusions

- 1. Introducing finer particles, mixed or as separate layer,
 - a) reduces settlement,
 - b) increases resilient stiffness, and
 - c) increases contact area with sleeper.
- 2. Re-profiling the shoulder,
 - a) reduces settlement, and
 - b) increases resilient stiffness.
 - Rig tests on different ballast gradations and sleeper types.
 - Data from pressure-sensitive paper.

Full scale laboratory tests

Tests to investigate the influence of introducing finer material

NR: 1639kg/m³

1703kg/m3

1648kg/m3

Settlement vs no. of cycles: effect of ballast gradation

- Mixing in finer material, or even placing finer particles on top, gives a more stable ballast layer.
- Even better: re-profile shoulders to 1:2 rather than 1:1

Resilient stiffness vs no. of cycles

Baseline test

Increasing finer proportion

Objective 1: Role and requirements of ballast grading

Possible further work considered

- Effect of grading on ballast strength, i.e. φ'_{crit.}
 It could be explored using scaled, even full size ballast, but it is not a priority.
- Effect of grading on drainage / fines capacity.
 Estimation using correlations from the literature is a possibility, but given the grain sizes involved the permeability should not be significantly affected.

Objective 2: Fibres, bags, gluing, resins, geogrids

Conclusions

- 1. First results indicate that random fibre reinforcement:
 - a) reduces settlement,
 - b) reduces rate of settlement,
 - c) reduces resilient stiffness, and
 - d) prevents spreading of ballast.
- 2. Using a geogrid reduces settlement.

- Triaxial and pilot rig test on ballast at different scales at Soton.
- Rig tests at Nott.

Effect of fibre reinforcement

Fibre length/width/thickness: 300mm/100mm/0.5mm

Fibre number: 1.33%

Volumetric content: 0.6%

Effect of fibre reinforcement

Fibre length/width/thickness: 300mm/100mm/0.5mm

Fibre number: 1.33%

Volumetric content: 0.6%

Geogrid Settlement Results: Mono-Block

Objective 2: Fibres, bags, gluing, resins, geogrids

Further work considered

- 1. Focus on fibres and geogrids, not gluing/resin/bags.
- 2. Edgar to test fibre reinforced ballast in the SSTF.
 - 1. Show reproducibility/repeatability for standard configuration.
 - 2. Test fibre reinforced ballast for at least one, ideally two, configurations. (varying e.g. fibre content, fibre dimensions, sleeper type, ballast gradation.)
- 3. Sydney and Mo to finalise rig tests in the RTF to determine the effect of biaxial geogrids for different sleeper types.

Objective 3: Effect of sleeper type and USPs.

Conclusions

- 1. Duo-block settles less than monoblock.
 - Rig tests at Soton Nott rig picture less clear.
- 2. USPs reduce settlement and rate of settlement, and almost remove the effect of sleeper shape on these.
 - Rig tests at Soton, box tests at Nott.
- USPs reduce resilient stiffness.
 - Rig tests at Soton

Settlement vs no. of cycles: effect of sleeper shape Number of cycles

- Steel sleeper: installation in the rig is problematic.
- Plastic and timber sleepers: some results are available, however they are still being checked for consistency.

Objective 3: Effect of sleeper type and USPs.

Further work

1. Combined interpretation of SSTF and RTF results, including plastic, timber and steel sleepers.

Half-day "lab integration" meeting: 7 August.

2. DEM analyses to explore possible effects of boundary conditions.

Deliverables by the end of the grant

PhD theses

Taufan Abadi, Sydney Laryea, (Femi Ajayi.)

Journal publications

- 1. Mechanics of fibre reinforced scaled ballast (x2).
- DEM modelling of scaled ballast across a range of pressures - effects of attrition/polishing (x2)
- 3. Bi- and tri-axial geogrid performance for different sleeper sections.
- Combined performance of USP & geogrids for different sleeper sections.

Deliverables by the end of the grant

Journal publications (continued)

- 5. Rig test results, some as joint papers. Indicative list:
- a. Common paper, possibly describing tests of different sleepers or USPs, to establish comparability of the results of the two rigs.
- b. Results from geogrid tests.
- c. Results from gradations/reprofiled shoulder/best case.
- d. (Results from fibre reinforced ballast tests may not reach publication stage during the term of the grant.)
- 6. Comparative tests of scaled vs full size ballast.

Thank you Any questions?

